
 | Java Basics

Facebook.com/wikitechy twitter.com/WikitechyCom © Copyright 2016. All Rights Reserved.

 File Operations in Java

Description

 File handling in java enables to read data from and write data to files

along with other file manipulation tasks.

 File operations are present in “java.io” package streams.

 A stream symbolizes series of data and holds different kind of

processes to perform computations upon those data.

 Streams can maintain variety of data formats such as bytes, primitive

data types, characters, and objects.

 Streams may just pass on data or work on them and convert into useful

ways.

 In general java program utilizes an inputstream to read source data,

one item at a time and an outputstream to write data to a target place,

one item at time.

Java streams are categorized into two major options:

 Byte Oriented – permits input and output of 8-bit bytes

 Character Oriented – permits input and output for 16-bit Unicode

characters.

 | Java Basics

Facebook.com/wikitechy twitter.com/WikitechyCom © Copyright 2016. All Rights Reserved.

Fig1. Java io streams

Character Oriented Stream:

 Implements Unicode characters for data transfer.

 Routinely accepts the limited / wide set of characters and hence

preferable for globalization.

 FileReader and FileWriter are frequently used classes for file

operations.

 | Java Basics

Facebook.com/wikitechy twitter.com/WikitechyCom © Copyright 2016. All Rights Reserved.

Fig2. Java Stream Types

Byte Oriented Stream:

 All byte stream classes are descended from InputStream and

OutputStream.

 They work on with 8-bit bytes of input / output operations.

 Byte stream is considered as a low-level I/O processing and

hence not preferable often.

 FileInputStream and FileOutputStream are frequently used

classes for file operations.

 | Java Basics

Facebook.com/wikitechy twitter.com/WikitechyCom © Copyright 2016. All Rights Reserved.

Sample Code:

import java.io.*;

public class JavaFileOperations {

 public static void main(String[] args) throws IOException {

 System.out.println("\n\nWikiTechy - Java File Operations\n");

 FileInputStream file1 = null; FileOutputStream file2 = null;

 FileReader rdr = null; FileWriter wrtr = null;

 try {

 file1 = new FileInputStream("myfile1.txt");

 file2 = new FileOutputStream("myfile2.txt");

 int c;

 while ((c = file1.read()) != -1) {

 file2.write(c);

}

System.out.println("\nByteStream File Operations

completed\n"); }

 catch(Exception ex) { System.out.println(ex); }

 finally {

 if (file1 != null) { file1.close(); }

 if (file2 != null) { file2.close(); }

}

 | Java Basics

Facebook.com/wikitechy twitter.com/WikitechyCom © Copyright 2016. All Rights Reserved.

 try {

 rdr = new FileReader("myfile3.txt");

 wrtr = new FileWriter("myfile4.txt");

 int c;

 while ((c = rdr.read())!= -1) {

 wrtr.write(c);

 }

System.out.println("\n\nCharacterStream File Operations

completed\n"); }

 catch(Exception ex) {

 System.out.println(ex);

 }

 finally {

 if (rdr != null) {

 rdr.close();

 }

 if (wrtr != null) {

 wrtr.close();

 }

 }

 }

}

 | Java Basics

Facebook.com/wikitechy twitter.com/WikitechyCom © Copyright 2016. All Rights Reserved.

Code Explanation:

Declare objects for class FileInputStream and FileOutputStream

 classes with the code

FileInputStream file1 = null; FileOutputStream file2 = null;

 Declare objects for class FileReader and FileWriter classes as

 FileReader rdr = null; FileWriter wrtr = null;

 Initialize the FileInputStream object to point to the file “myfile1.txt”

and FileOutputStream to “myfile2.txt”.

file1 = new FileInputStream("myfile1.txt");

 file2 = new FileOutputStream("myfile2.txt");

 | Java Basics

Facebook.com/wikitechy twitter.com/WikitechyCom © Copyright 2016. All Rights Reserved.

Read contents from file1 till the end and write them into file2.

while ((c = file1.read()) != -1) {

 file2.write(c);

}

Finally close the inputstream objects. This will destroy the pointers to

the files.

finally {

 if (file1 != null) { file1.close(); }

 if (file2 != null) { file2.close(); }

}

Initialize the FileReader object to point to the file “myfile3.txt” and

FileWriter to “myfile4.txt”.

rdr = new FileReader("myfile3.txt");

 wrtr = new FileWriter("myfile4.txt");

Read contents from file3 till the end and write them into file4.

while ((c = rdr.read())!= -1)

{ wrtr.write(c); }

 | Java Basics

Facebook.com/wikitechy twitter.com/WikitechyCom © Copyright 2016. All Rights Reserved.

Finally close the reader / writer objects. This will destroy the pointers

to the files.

 if (rdr != null) {

 rdr.close();

 }

 if (wrtr != null) {

 wrtr.close();

 }

Output:

 | Java Basics

Facebook.com/wikitechy twitter.com/WikitechyCom © Copyright 2016. All Rights Reserved.

Files myfile2.txt and myfile4.txt are empty before executing file

operations.

 | Java Basics

Facebook.com/wikitechy twitter.com/WikitechyCom © Copyright 2016. All Rights Reserved.

File content copied from source to destination after completing

the file execution processes.

